Note on a Allen-Cahn equation with Caputo-Fabrizio derivative

نویسندگان

چکیده

In this short note, we investigate the Allen-Cahn equation with appearance of Caputo-Fabizzio derivative. We obtain a local solution when initial value is small enough. This an that has many practical applications. The power term in nonlinear component source function and operator combine to make finding space more difficult than classical problem. discovered new technique, connecting Hilbert scale $L^p$ spaces, overcome these difficulties. Evaluation smoothness was also performed. research ideas paper can be used for other models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Allen-cahn Equation

Our aim in this paper is to study generalizations of the Allen-Cahn equation based on a modification of the Ginzburg-Landau free energy proposed in [25]. In particular, the free energy contains an additional term called Willmore regularization. We prove the existence, uniqueness and regularity of solutions, as well as the existence of the global attractor. Furthermore, we study the convergence ...

متن کامل

Tightness for a Stochastic Allen–cahn Equation

We study an Allen–Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions.

متن کامل

Boundary Interface for the Allen-cahn Equation

We consider the Allen-Cahn equation ε∆u + u− u = 0 in Ω, ∂u ∂ν = 0 on ∂Ω, where Ω is a smooth and bounded domain in R such that the mean curvature is positive at each boundary point. We show that there exists a sequence εj → 0 such that the Allen-Cahn equation has a solution uεj with an interface which approaches the boundary as j → +∞.

متن کامل

Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative

In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...

متن کامل

Convergence of the Allen-cahn Equation with Neumann Boundary Conditions

We study a singular limit problem of the Allen-Cahn equation with Neumann boundary conditions and general initial data of uniformly bounded energy. We prove that the time-parametrized family of limit energy measures is Brakke’s mean curvature flow with a generalized right angle condition on the boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in nonlinear analysis

سال: 2021

ISSN: ['2636-7556']

DOI: https://doi.org/10.53006/rna.962068